1. Moraru AD, Costin D, Moraru RL, Branisteanu DC. Artificial intelligence and deep learning in ophthalmology - present and future (review). Exp Ther Med. 2020;20(4):3469-3473.
  2. Coyner AS, Campbell JP, Chiang MF. Demystifying the jargon: the bridge between ophthalmology and artificial intelligence. Ophthalmol Retina. 2019;3(4):291-293.
  3. Jeon S, Liu Y, Li JO, Webster D, Peng L, Ting D. AI papers in ophthalmology made simple. Eye (Lond). 2020;34(11):1947-1949.
  4. Gulshan V, Peng L, Coram M. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402-2410.
  5. Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175.
  6. Tong Y, Lu W, Yu Y, et al. Application of machine learning in ophthalmic imaging modalities. Eye Vis (Lond). 2020;7:22.
  7. Khan SM, Liu X, Nath S, et al. A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digit Health. 2021;3(1):e51-e66.
  8. Pead E, Megaw R, Cameron J, et al. Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Surv Ophthalmol. 2019;64(4):498-511.
  9. Harrison L. Artificial Intelligence as a disruptor to amd diagnosis. Retin Physician. 2020;17:32-33.
  10. Schmidt-Erfurth U, Bogunovic H, Grechenig C, et al. AOS thesis 2020: role of deep learning–quantified hyperreflective foci for the prediction of geographic atrophy progression. Am J Ophthalmol. 2020;216:257-270.
  11. Grewal PS, Oloumi F, Rubin U, Tennant MTS. Deep learning in ophthalmology: a review. Can J Ophthalmol. 2018;53(4):309-313.
  12. Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158-164.
  13. Snyder PJ, Alber J, Alt C, et al. Retinal imaging in Alzheimer's and neurodegenerative diseases. Alzheimers Dement. 2021;17(1):103-111.
  14. Wisely CE, Wang D, Henao R, et al. Deep learning algorithm for diagnosis of Alzheimer’s disease using multimodal retinal imaging. Invest Ophthalmol Vis Sci. 2019;60(9):1461.
  15. Peng Y, Keenan T, Chen Q, et al. Predicting risk of late age-related macular degeneration using deep learning. NPJ Digit Med. 2020;3:111.
  16. Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology. 2018;125:1410-1420.
  17. Bhuiyan A, Wong TY, Ting DSW, Govindaiah A, Souied EH, Smith RT. Artificial intelligence to stratify severity of age-related macular degeneration (AMD) and predict risk of progression to late AMD. Transl Vis Sci Technol. 2020;9(2):25.
  18. Li T, Bo W, Hu C, et al. Applications of deep learning in fundus images: a review. Med Image Anal. 2021;69:101971. [Epub ahead of print].
  19. Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211-2223.
  20. Burlina P, Freund DE, Dupas B, Bressler N. Automatic screening of age-related macular degeneration and retinal abnormalities. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3962-3966.
  21. Zheng Y, Hijazi MH, Coenen F. Automated "disease/no disease" grading of age-related macular degeneration by an image mining approach. Invest Ophthalmol Vis Sci. 2012;53(13):8310-8318.
  22. Saha S, Nassisi M, Wang M, et al. Automated detection and classification of early AMD biomarkers using deep learning. Sci Rep. 2019;9(1):10990.
  23. Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study. identifier: NCT00734487. Updated September 2, 2020. Accessed May 20, 2021.
  24. Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med. 2020;26(6):892-899.
  25. Motozawa N, An G, Takagi S, et al. Optical coherence tomography-based deep-learning models for classifying normal and age-related macular degeneration and exudative and non-exudative age-related macular degeneration changes. Ophthalmol Ther. 2019;8(4):527-539.
  26. Burlina PM, Joshi N, Pacheco KD, et al. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA Ophthalmol. 2018;136(12):1359-1366.
  27. Hwang DK, Hsu CC, Chang KJ, et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics. 2019;9(1):232-245.
  28. Prahs P, Radeck V, Mayer C, et al. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Graefes Arch Clin Exp Ophthalmol. 2018;256(1):91-98.